

Sample &

Buy

SLVSBN4C - JANUARY 2013-REVISED AUGUST 2016

DRV8839 Low-Voltage Dual ¹/₂-H-Bridge Driver IC

Technical

Documents

Features 1

- Dual ¹/₂-H-Bridge Motor Driver
 - Drives a DC Motor or One Winding of a Stepper Motor, or Other Loads
 - Low MOSFET ON-Resistance: HS + LS 280 m Ω
- 1.8-A Maximum Drive Current
- Separate Motor and Logic Supply Pins:
 - 0-V to 11-V Motor-Operating Supply-Voltage
 - 1.8-V to 7-V Logic Supply-Voltage
- Individual ¹/₂-H-Bridge Control Input Interface
- Low-Power Sleep Mode With 120-nA Maximum Combined Supply Current
- 2.00-mm × 3.00-mm 12-Pin WSON Package

Applications 2

- Battery-Powered:
 - **DSLR** Lenses
 - **Consumer Products**
 - Toys
 - Robotics
 - Cameras
 - **Medical Devices**

3 Description

Tools &

Software

The DRV8839 provides a versatile power driver solution for cameras, consumer products, toys, and other low-voltage or battery-powered applications. The device has two independent ¹/₂-H-bridge drivers and can drive one DC motor or one winding of a stepper motor, as well as other devices like solenoids. The output stages use N-channel power MOSFETs configured as 1/2-H-bridges. An internal charge pump generates needed gate-drive voltages.

Support &

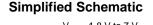
Community

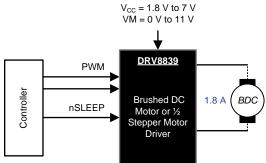
20

The DRV8839 can supply up to 1.8-A of output current. It operates on a motor power supply voltage from 0 V to 11 V and a device power supply voltage of 1.8 V to 7 V.

The DRV8839 has independent input and enable pins for each ¹/₂-H-bridge which allow independent control of each output.

Internal shutdown functions are provided for protection, overcurrent short-circuit protection, undervoltage lockout, and overtemperature.


The DRV8839 is packaged in a 12-pin,


2.00-mm × 3.00-mm WSON package (Eco-friendly: RoHS and no Sb/Br).

Device Information⁽¹⁾

PART NUMBER	PACKAGE	BODY SIZE (NOM)
DRV8839	WSON (12)	2.00 mm × 3.00 mm

(1) For all available packages, see the Orderable Addendum at the end of the data sheet.

Copyright © 2016, Texas Instruments Incorporated

.

Table of Contents

~

1	Fea	tures 1
2	Арр	lications 1
3	Des	cription 1
4	Rev	ision History 2
5	Pin	Configuration and Functions
6	Spe	cifications 4
	6.1	Absolute Maximum Ratings 4
	6.2	ESD Ratings 4
	6.3	Recommended Operating Conditions 4
	6.4	Thermal Information 4
	6.5	Electrical Characteristics5
	6.6	Timing Requirements 5
	6.7	Typical Characteristics 7
7	Deta	ailed Description8
	7.1	Overview
	7.2	Functional Block Diagram 8
	7.3	Feature Description9
	7.4	Device Functional Modes9

8	App	lication and Implementation 12
	8.1	Application Information 12
	8.2	Typical Application 12
9	Pow	er Supply Recommendations 14
	9.1	Bulk Capacitance 14
10	Lay	out
		Layout Guidelines 15
	10.2	Layout Example 15
	10.3	Thermal Considerations 15
11	Dev	ice and Documentation Support 17
	11.1	Documentation Support 17
	11.2	Receiving Notification of Documentation Updates 17
	11.3	Community Resources 17
	11.4	Trademarks 17
	11.5	Electrostatic Discharge Caution 17
	11.6	Glossary 17
12		hanical, Packaging, and Orderable mation

4 Revision History

NOTE: Page numbers for previous revisions may differ from page numbers in the current version.

C	hanges from Revision B (December 2015) to Revision C	Page
•	Deleted nFAULT from the Simplified Schematic	1
•	Deleted the NC pins from the Pin Functions table	3
•	Changed the value of the capacitor on the VM pin from 10 µF to 0.1 µF in the Typical Application Schematic	12
•	Changed the Layout Guidelines to clarify the guidelines for the VM pin	15
•	Deleted references to TI's PowerPAD package and updated it with thermal pad where applicable	16
•	Added the Receiving Notification of Documentation Updates section	17

Changes from Revision A (January 2014) to Revision B

•	Added ESD Ratings table, Feature Description section, Device Functional Modes, Application and Implementation
	section, Power Supply Recommendations section, Layout section, Device and Documentation Support section, and
	Mechanical, Packaging, and Orderable Information section1

C	Changes from Original (January 2013) to Revision A	Page
•	Changed <i>Features</i> bullet	1
•	Changed motor supply voltage range in <i>Description</i> section	1
•	Changed Motor power supply voltage range in Recommended Operating Conditions	4
•	Added t _{OCR} and t _{DEAD} parameters to <i>Electrical Characteristics</i>	5
•	Added paragraph to Power Supplies and Input Pins section	14
-		

www.ti.com

Page

5 Pin Configuration and Functions

VM VM OUT1 OUT2	1 2 3 4	GND Thermal Pad	12 11 10 9	VCC nSLEEP IN1 EN1
GND GND	5 6		8 7	IN2 EN2

DSS Package 12-Pin WSON With Exposed Thermal Pad

Pin	Fund	ctions
	I MIIN	

PIN		I/O ⁽¹⁾	DESCRIPTION	EXTERNAL COMPONENTS	
NAME	NO.	1/0 (1)	DESCRIPTION	OR CONNECTIONS	
POWER AN	D GROUND				
GND, Thermal pad	5, 6	_	Device ground		
VCC	12	—	Device supply	Bypass to GND with a 0.1- μ F, 6.3-V ceramic capacitor	
VM	1, 2	_	Motor supply	Bypass to GND with a 0.1- μ F, 16-V ceramic capacitor	
CONTROL					
EN1	9	I	Enable 1	Logic high enables OUT1 Internal pulldown resistor	
EN2	7	I	Enable 2	Logic high enables OUT2 Internal pulldown resistor	
IN1	10	I	Input 1	Logic input controls OUT1 Internal pulldown resistor	
IN2	8	I	Input 2	Logic input controls OUT2 Internal pulldown resistor	
nSLEEP	11	I	Sleep mode input	Logic low puts device in low-power sleep mode Logic high for normal operation Internal pulldown resistor	
OUTPUT					
OUT1	3	0	Output 1	Connect to motor winding	
OUT2	4	0	Output 2	Connect to motor winding	

(1) Directions: I = input, O = output, OZ = tri-state output, OD = open-drain output, IO = input/output.

TEXAS INSTRUMENTS

www.ti.com

6 Specifications

6.1 Absolute Maximum Ratings

Over operating free-air temperature range (unless otherwise noted)⁽¹⁾⁽²⁾

		MIN	MAX	UNIT
	Power supply voltage, VM	-0.3	12	V
	Power supply voltage, VCC	-0.3	7	V
	Digital input pin voltage	-0.5	7	V
	Peak motor drive output current	Internall	y limited	А
TJ	Operating junction temperature	-40	150	°C
T _{stg}	Storage temperature	-60	150	°C

(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

(2) All voltage values are with respect to network ground terminal.

6.2 ESD Ratings

			VALUE	UNIT
V	Electrostatic	Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001 ⁽¹⁾	±4000	V
V _(ESD)	discharge	Charged-device model (CDM), per JEDEC specification JESD22-C101 ⁽²⁾	±1500	V

(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.

(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.

6.3 Recommended Operating Conditions

 $T_A = 25^{\circ}C$ (unless otherwise noted)

		MIN	NOM MAX	UNIT
V _{CC}	Device power supply voltage	1.8	7	V
V _M	Motor power supply voltage	0	11	V
V _{IN}	Logic level input voltage	0	5.5	V
I _{OUT}	H-bridge output current ⁽¹⁾	0	1.8	А
f _{PWM}	Externally applied PWM frequency	0	250	kHz

(1) Power dissipation and thermal limits must be observed.

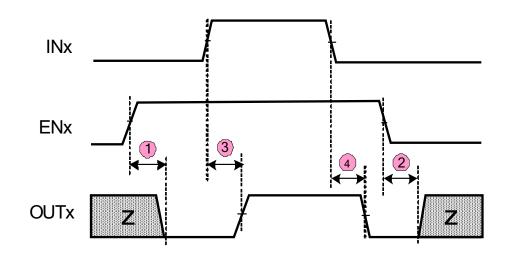
6.4 Thermal Information

		DRV8839	
	THERMAL METRIC ⁽¹⁾	DSS (WSON)	UNIT
		12 PINS	
R_{\thetaJA}	Junction-to-ambient thermal resistance	50.4	°C/W
$R_{\theta JC(top)}$	Junction-to-case (top) thermal resistance	58	°C/W
$R_{ heta JB}$	Junction-to-board thermal resistance	19.9	°C/W
ΨJT	Junction-to-top characterization parameter	0.9	°C/W
Ψјв	Junction-to-board characterization parameter	20	°C/W
R _{0JC(bot)}	Junction-to-case (bottom) thermal resistance	6.9	°C/W

(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application report.

6.5 Electrical Characteristics

 $T_A = 25^{\circ}C$, $V_M = 5$ V, $V_{CC} = 3$ V (unless otherwise noted)


	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
POWER S	SUPPLY					
		No PWM		40	100	μA
I _{VM}	VM operating supply current	50 kHz PWM		0.8	1.5	mA
I _{VMQ}	VM sleep mode supply current	nSLEEP = 0 V		30	95	nA
		No PWM		300	500	μA
I _{VCC} VCC operating supply current		50 kHz PWM		0.7	1.5	mA
I _{VCCQ}	VCC sleep mode supply current	nSLEEP = 0 V		5	25	nA
V	VCC undervoltage lockout	V _{CC} rising			1.8	V
V _{UVLO}	voltage	V _{CC} falling		1.7		
LOGIC-LE	EVEL INPUTS					
V _{IL}	Input low voltage		0.31 × V _{CC} 0).34 × V _{CC}		V
V _{IH}	Input high voltage		0	0.39 × V _{CC} 0.	43 × V _{CC}	V
V _{HYS}	Input hysteresis		0	0.08 × V _{CC}		V
I _{IL}	Input low current	V _{IN} = 0	-5		5	μA
I _{IH}	Input high current	V _{IN} = 3.3 V			50	μA
R _{PD}	Pulldown resistance			100		kΩ
H-BRIDG	E FETS					
R _{DS(ON)}	HS + LS FET on resistance	I _O = 800 mA, T _J = 25°C		280	330	mΩ
I _{OFF}	OFF-state leakage current				±200	nA
PROTECT	TION CIRCUITS					
I _{OCP}	Overcurrent protection trip level		1.9		3.5	А
t _{OCR}	Overcurrent protection retry time			1		ms
t _{DEAD}	Output dead time			100		ns
t _{TSD}	Thermal shutdown temperature	Die temperature	150	160	180	°C

6.6 Timing Requirements ⁽¹⁾

 $\mathsf{T}_{\mathsf{A}} = 25^{\circ}\mathsf{C}, \, \mathsf{V}_{\mathsf{M}} = 5 \,\, \mathsf{V}, \, \mathsf{V}_{\mathsf{CC}} = 3 \,\, \mathsf{V}, \, \mathsf{R}_{\mathsf{L}} = 20 \,\, \Omega$

			MIN	MAX	UNIT
1	t ₁	Output enable time		120	ns
2	t ₂	Output disable time		120	ns
3	t ₃	Delay time, INx high to OUTx high		120	ns
4	t ₄	Delay time, INx low to OUTx low		120	ns
5	t ₅	Output rise time	50	150	ns
6	t ₆	Output fall time	50	150	ns

(1) Not production tested - ensured by design

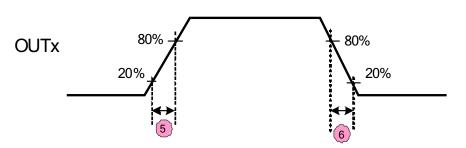
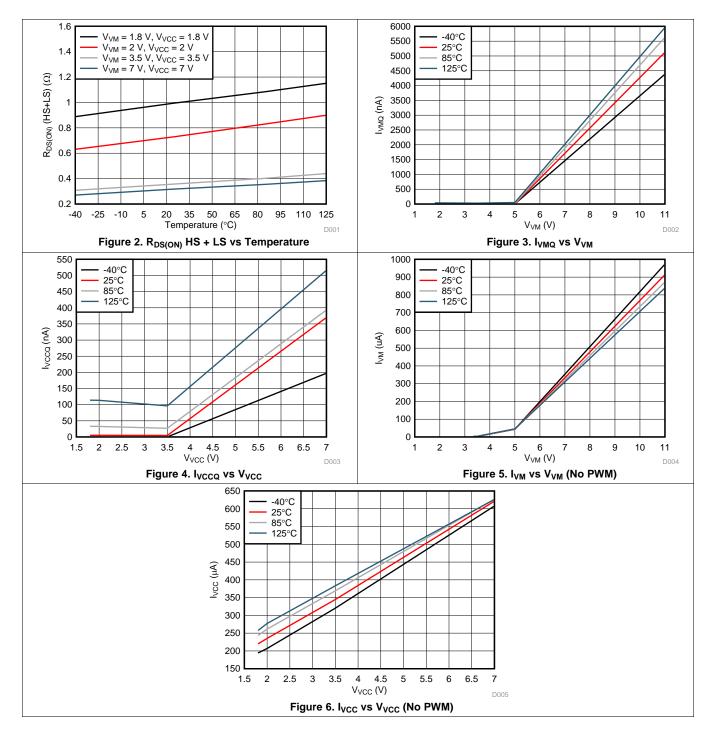
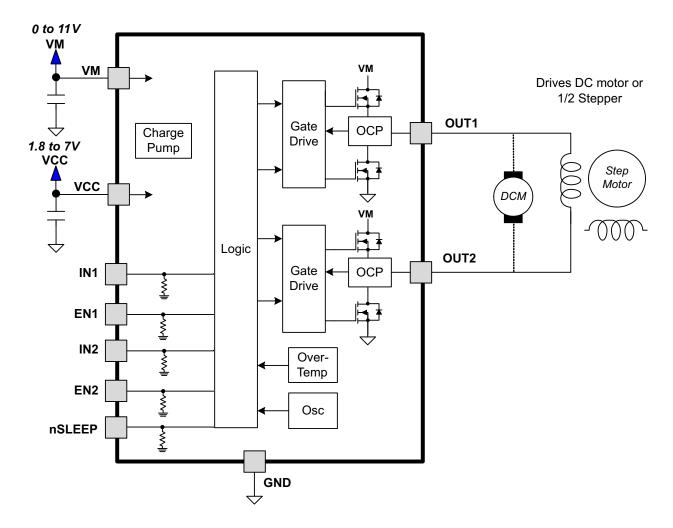



Figure 1. Timing Requirements

6.7 Typical Characteristics

7 Detailed Description


7.1 Overview

The DRV8839 is an integrated motor driver solution used for brushed motor control. The device integrates two independent ½ H-bridge, and can drive one motor in both directions or two motors in one direction. The output driver block for each ½ H-bridge consists of N-channel power MOSFETs. An internal charge pump generates the gate drive voltages. Protection features include overcurrent protection, short-circuit protection, undervoltage lockout, and overtemperature protection.

The DRV8839 allows separation of the motor voltage and logic voltage if desired. If VM and VCC are less than 7 V, the two voltages may be connected.

The control interface of the DRV8839 uses INx and ENx to control each 1/2 H-bridge separately.

7.2 Functional Block Diagram

7.3 Feature Description

7.3.1 Protection Circuits

The DRV8839 is fully protected against undervoltage, overcurrent, and overtemperature events.

7.3.1.1 Overcurrent Protection (OCP)

An analog current limit circuit on each FET limits the current through the FET by removing the gate drive. If this analog current limit persists for longer than the OCP time, all FETs in the H-bridge disables. After approximately 1 ms, the bridge will be re-enabled automatically.

Overcurrent conditions on both high-side and low-side devices; a short to ground, supply, or across the motor winding result in an overcurrent shutdown.

7.3.1.2 Thermal Shutdown (TSD)

If the die temperature exceeds safe limits, all FETs in the H-bridge disables. Operation automatically resumes once the die temperature has fallen to a safe level.

7.3.1.3 Undervoltage Lockout (UVLO)

If at any time the voltage on the VCC pin falls below the undervoltage lockout threshold voltage, all circuitry in the device disables and internal logic resets. Operation resumes when VCC rises above the UVLO threshold.

Table 1. Device Protection

FAULT	CONDITION	ERROR REPORT	H-BRIDGE	INTERNAL CIRCUITS	RECOVERY
VCC undervoltage (UVLO)	VCC < VUVLO	None	Disabled	Disabled	VCC > VUVLO
Overcurrent (OCP)	IOUT > IOCP	None	Disabled	Operating	tOCR
Thermal shutdown (TSD)	TJ > TTSD	None	Disabled	Operating	TJ < TTSD – THYS

7.4 Device Functional Modes

The DRV8839 is active when the nSLEEP pin is set to a logic high. When in sleep mode, the ½ H-bridge FETs are disabled (High-Z).

Table 2. Device Operating Modes

OPERATING MODE	OPERATING MODE CONDITION		INTERNAL CIRCUITS
Operating	nSLEEP high	Operating	Operating
Sleep mode	nSLEEP low	Disabled	Disabled
Fault encountered	Any fault condition met	Disabled	See Table 1

7.4.1 Bridge Control

The DRV8839 is controlled using separate enable and input pins for each ½-H-bridge.

The following table shows the logic for the DRV8839:

ENx	INx	OUTx							
0	Х	Z							
1	0	L							
1	1	Н							

Table 3. Bridge Control

DRV8839

SLVSBN4C - JANUARY 2013-REVISED AUGUST 2016

DRV8839 SLVSBN4C – JANUARY 2013 – REVISED AUGUST 2016

7.4.2 Sleep Mode

If the nSLEEP pin reaches a logic-low state, the DRV8839 enters a low-power sleep mode. In this state all unnecessary internal circuitry powers down.

7.4.3 Motor Connections

If a single DC motor connects to the DRV8839, it is connected between the OUT1 and OUT2 pins as shown in Figure 7:

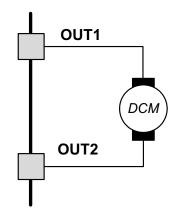


Figure 7. Single DC Motor Connection

Motor operation is controlled as show in Table 4.

Table 4. Single DC Motor Operation

EN1	EN2	IN1	IN2	OUT1	OUT2	MOTOR OPERATION
0	Х	Х	Х	Z	See ⁽¹⁾	Off (coast)
Х	0	Х	Х	See ⁽²⁾	Z	Off (coast)
1	1	0	0	L	L	Brake
1	1	0	1	L	Н	Reverse
1	1	1	0	Н	L	Forward
1	1	1	1	Н	Н	Brake

(1) State depends on EN2 and IN2, but does not affect motor operation because OUT1 is tri-stated.

(2) State depends on EN1 and IN1, but does not affect motor operation because OUT2 is tri-stated.

Two DC motors can be connected to the DRV8839. In this mode, it is not possible to reverse the direction of the motors; they turn only in one direction. The connections are shown in Figure 8:

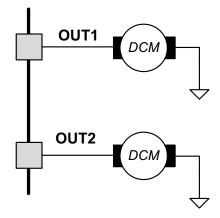


Figure 8. Dual DC Motor Connection

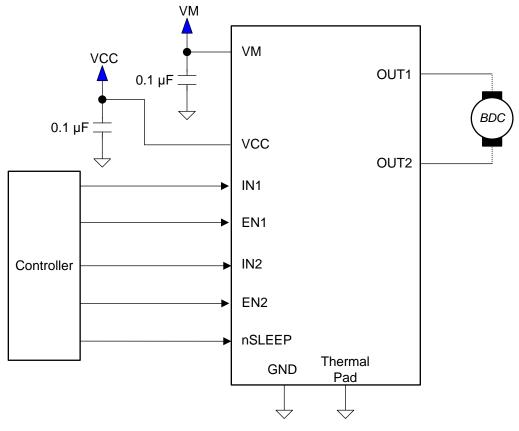
Motor operation is controlled shown in Table 5.

Table	5.	Dual	DC	Motor	Operation
IUNIC	υ.	Duui	20	motor	operation

ENx	INx	OUTx	MOTOR OPERATION
0	Х	Z	Off (coast)
1	0	L	Brake
1	1	Н	Forward

8 Application and Implementation

NOTE


Information in the following applications sections is not part of the TI component specification, and TI does not warrant its accuracy or completeness. TI's customers are responsible for determining suitability of components for their purposes. Customers should validate and test their design implementation to confirm system functionality.

8.1 Application Information

The DRV8839 is used in one control applications.

8.2 Typical Application

The following design is a common application of the DRV8839.

Copyright © 2016, Texas Instruments Incorporated

8.2.1 Design Requirements

The design requirements are shown in Table 6.

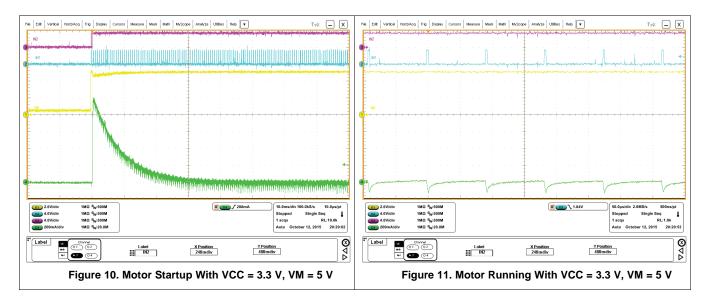
Table	6.	Design	Requirements
-------	----	--------	--------------

DESIGN PARAMETER	REFERENCE	EXAMPLE VALUE						
Motor voltage	VM	5 V						
Motor RMS current	IRMS	0.3 A						
Motor startup current	ISTART	0.6 A						

8.2.2 Detailed Design Procedure

The following design procedure can be used to configure the DRV8839 in a brushed motor application.

8.2.2.1 Motor Voltage


The appropriate motor voltage depends on the ratings of the motor selected and the desired RPM. A higher voltage spins a brushed DC motor faster with the same PWM duty cycle applied to the power FETs. A higher voltage also increases the rate of current change through the inductive motor windings.

8.2.2.2 Low-Power Operation

When entering sleep mode, TI recommends setting all inputs as a logic low to minimize system power.

8.2.2.3 Application Curves

The following scope captures show a typical motor startup and running. Channel 1 is VM, Channel 2 is IN1, Channel 3 is IN2, and Channel 4 is motor current. the motor used is a NMB Technologies, PPN7PA12C1.

DRV8839

SLVSBN4C - JANUARY 2013-REVISED AUGUST 2016

9 Power Supply Recommendations

The input pins can drive within their recommended operating conditions with or without the VCC and VM power supplies present. No leakage current path exists to the supply. There is a weak pulldown resistor (approximately 100 k Ω) to ground on each input pin.

VCC and VM can be applied and removed in any order. When VCC is removed, the device enters a low-power state and draws very little current from VM. If the supply voltage is between 1.8 V and 7 V, VCC and VM can connect together.

The VM voltage supply does not have any undervoltage lockout protection (UVLO), so as long as VCC > 1.8 V, the internal device logic remains active. This means that the VM pin voltage may drop to 0 V, however, the load may not be sufficiently driven at low VM voltages.

9.1 Bulk Capacitance

Having appropriate local bulk capacitance is an important factor in motor drive system design. It is generally beneficial to have more bulk capacitance, while the disadvantages are increased cost and physical size.

The required amount of local capacitance depends on a variety of factors, including:

- · The highest current required by the motor system
- The power supply's capacitance and ability to source current
- The amount of parasitic inductance between the power supply and motor system
- The acceptable voltage ripple
- The type of motor used (brushed DC, brushless DC, stepper)
- The motor braking method

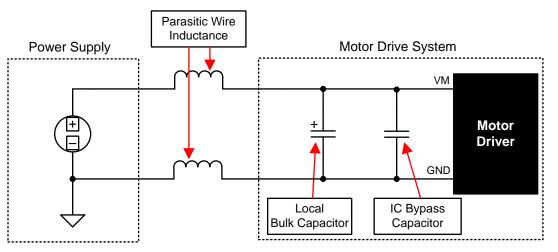


Figure 12. Bulk Capacitance

10 Layout

10.1 Layout Guidelines

The VCC pin should be bypassed to GND using low-ESR ceramic bypass capacitors with a recommended value of 0.1- μ F rated for VCC. This capacitor should be placed as close to the VCC pin as possible with a thick trace.

The VM pin should be bypassed to GND using low-ESR ceramic bypass capacitors with a recommended value of 0.1 μ F rated for VM. This capacitor should be placed as close to the VM pin as possible with a thick trace. The VM pin must bypass to ground using an appropriate bulk capacitor. This component can be an electrolytic and should be located close to the DRV8839 device.

10.2 Layout Example

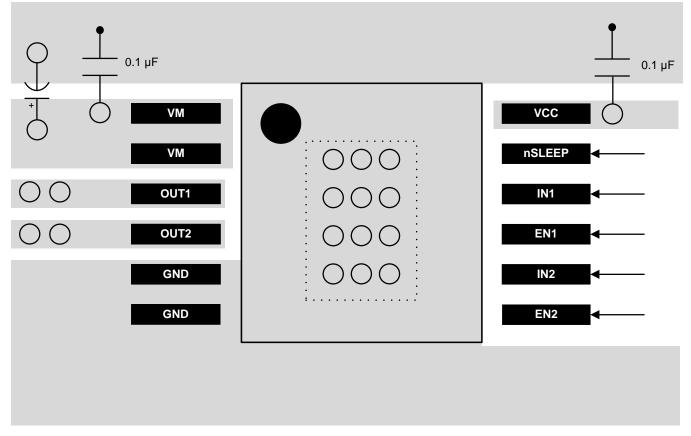


Figure 13. Layout Recommendation

10.3 Thermal Considerations

The DRV8839 has thermal shutdown (TSD) as described above. If the die temperature exceeds approximately 150°C, the device disables until the temperature drops to a safe level.

Any tendency of the device to enter thermal shutdown is an indication of either excessive power dissipation, insufficient heatsinking, or too high an ambient temperature.

10.3.1 Power Dissipation

The power dissipation of the DRV8839 is a function of RMS motor current and the each output's FET resistance $(R_{DS(ON)})$ as seen in Equation 1:

Power $\approx I_{RMS}^2 \times (High-Side R_{DS(ON)} + Low-Side R_{DS(ON)})$

Thermal Considerations (continued)

For this example, V_{VM} = 1.8 V, V_{VCC} = 1.8 V, the ambient temperature is 35°C, and the junction temperature reaches 65°C. At 65°C, the sum of $R_{DS(ON)}$ is about 1 Ω . With an example motor current of 0.8 A, the dissipated power in the form of heat will be 0.8 A² × 1 Ω = 0.64 W.

The temperature that the DRV8839 reaches will depend on the thermal resistance to the air and PCB. It is important to solder the device thermal pad to the PCB ground plane, with vias to the top and bottom board layers, in order dissipate heat into the PCB and reduce the device temperature. In the example used here, the DRV8839 had an effective thermal resistance $R_{\theta,JA}$ of 47°C/W, and as shown in Equation 2:

 $T_J = T_A + (P_D \times R_{\theta,JA}) = 35^{\circ}C + (0.64 \text{ W} \times 47^{\circ}C/\text{W}) = 65^{\circ}C$

(2)

11 Device and Documentation Support

11.1 Documentation Support

11.1.1 Related Documentation

For related documentation see the following:

- AN-1187 Leadless Leadframe Package (LLP) (SNOA401)
- DRV8839 Evaluation Module (SLVU879)
- QFN/SON PCB Attachment (SLUA271)

11.2 Receiving Notification of Documentation Updates

To receive notification of documentation updates, navigate to the device product folder on ti.com. In the upper right corner, click on *Alert me* to register and receive a weekly digest of any product information that has changed. For change details, review the revision history included in any revised document.

11.3 Community Resources

The following links connect to TI community resources. Linked contents are provided "AS IS" by the respective contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of Use.

TI E2E[™] Online Community *TI's Engineer-to-Engineer (E2E) Community.* Created to foster collaboration among engineers. At e2e.ti.com, you can ask questions, share knowledge, explore ideas and help solve problems with fellow engineers.

Design Support TI's Design Support Quickly find helpful E2E forums along with design support tools and contact information for technical support.

11.4 Trademarks

E2E is a trademark of Texas Instruments. All other trademarks are the property of their respective owners.

11.5 Electrostatic Discharge Caution

These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam during storage or handling to prevent electrostatic damage to the MOS gates.

11.6 Glossary

SLYZ022 — TI Glossary.

This glossary lists and explains terms, acronyms, and definitions.

12 Mechanical, Packaging, and Orderable Information

The following pages include mechanical, packaging, and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of this document. For browser-based versions of this data sheet, refer to the left-hand navigation.

7-Jul-2016

PACKAGING INFORMATION

Orderable Device	Status	Package Type	Package	Pins	Package	Eco Plan	Lead/Ball Finish	MSL Peak Temp	Op Temp (°C)	Device Marking	Samples
	(1)		Drawing		Qty	(2)	(6)	(3)		(4/5)	
DRV8839DSSR	ACTIVE	WSON	DSS	12	3000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR	-40 to 85	8839	Samples

⁽¹⁾ The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

⁽²⁾ Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.

TBD: The Pb-Free/Green conversion plan has not been defined.

Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes. **Pb-Free (RoHS Exempt):** This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.

Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)

⁽³⁾ MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

⁽⁴⁾ There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.

(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.

(⁶⁾ Lead/Ball Finish - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish value exceeds the maximum column width.

Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

PACKAGE OPTION ADDENDUM

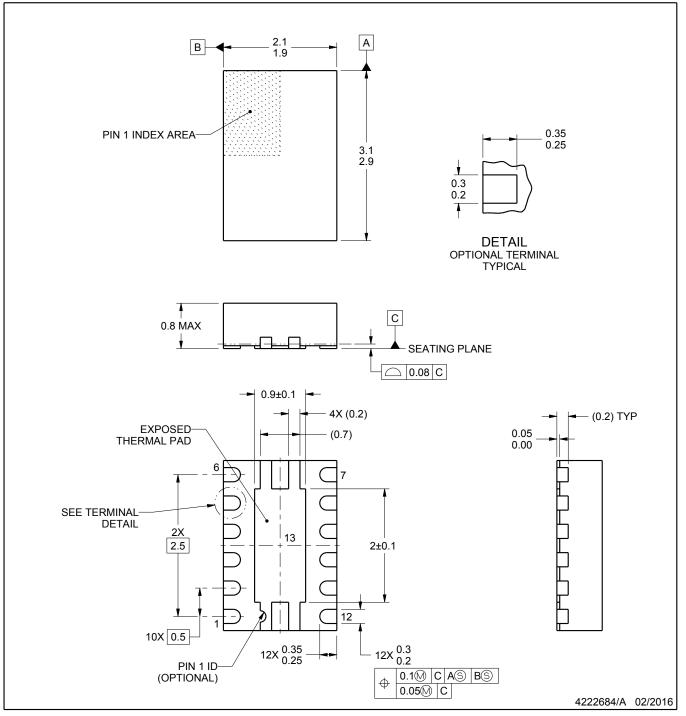
7-Jul-2016

GENERIC PACKAGE VIEW

WSON - 0.8 mm max height PLASTIC SMALL OUTLINE - NO LEAD

Images above are just a representation of the package family, actual package may vary. Refer to the product data sheet for package details.

4209244/D


DSS0012A

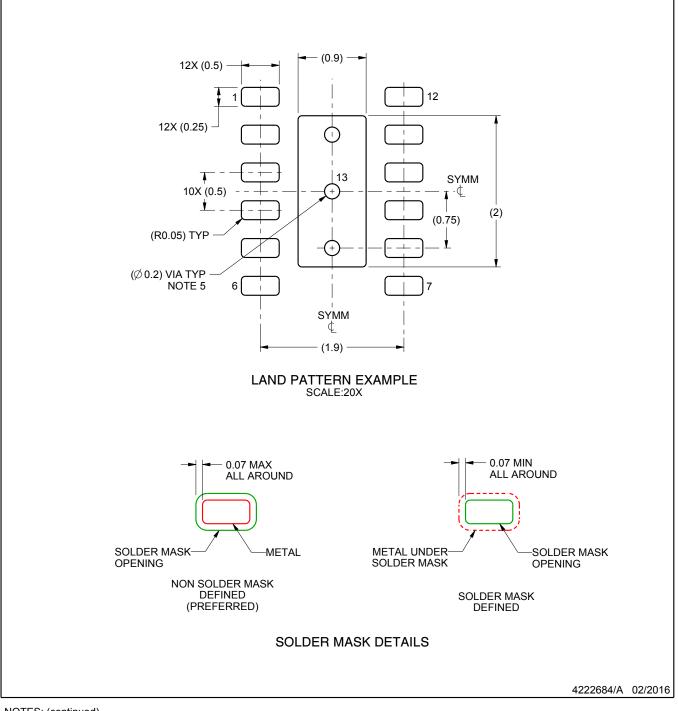
PACKAGE OUTLINE

WSON - 0.8 mm max height

PLASTIC SMALL OUTLINE - NO LEAD

NOTES:

1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.2. This drawing is subject to change without notice.3. The package thermal pad must be soldered to the printed circuit board for thermal and mechanical performance.



DSS0012A

EXAMPLE BOARD LAYOUT

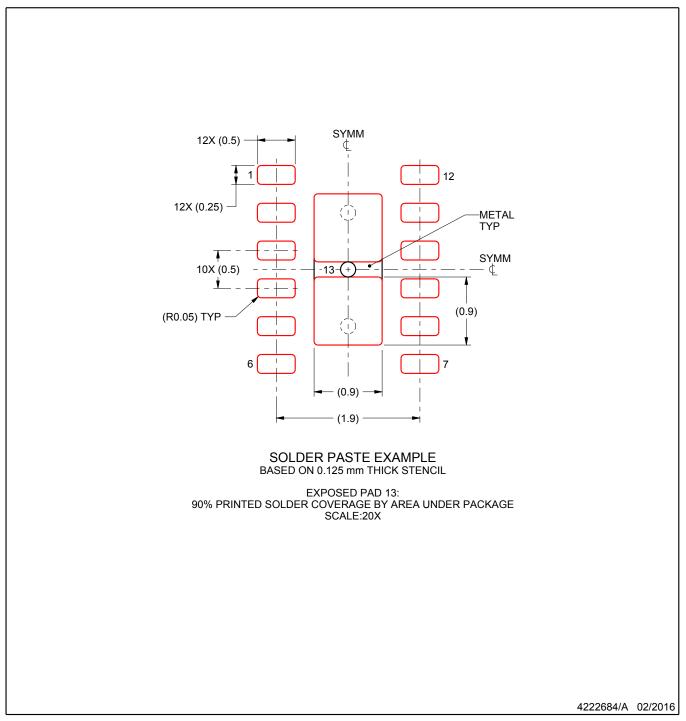
WSON - 0.8 mm max height

PLASTIC SMALL OUTLINE - NO LEAD

NOTES: (continued)

4. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature number SLUA271 (www.ti.com/lit/slua271).

5. Vias are optional depending on application, refer to device data sheet. If some or all are implemented, recommended via locations are shown. It is recommended that vias located under solder paste be filled, plugged or tented.



DSS0012A

EXAMPLE STENCIL DESIGN

WSON - 0.8 mm max height

PLASTIC SMALL OUTLINE - NO LEAD

NOTES: (continued)

6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.

IMPORTANT NOTICE

Texas Instruments Incorporated (TI) reserves the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete.

TI's published terms of sale for semiconductor products (http://www.ti.com/sc/docs/stdterms.htm) apply to the sale of packaged integrated circuit products that TI has qualified and released to market. Additional terms may apply to the use or sale of other types of TI products and services.

Reproduction of significant portions of TI information in TI data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such reproduced documentation. Information of third parties may be subject to additional restrictions. Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyers and others who are developing systems that incorporate TI products (collectively, "Designers") understand and agree that Designers remain responsible for using their independent analysis, evaluation and judgment in designing their applications and that Designers have full and exclusive responsibility to assure the safety of Designers' applications and compliance of their applications (and of all TI products used in or for Designers' applications) with all applicable regulations, laws and other applicable requirements. Designer represents that, with respect to their applications, Designer has all the necessary expertise to create and implement safeguards that (1) anticipate dangerous consequences of failures, (2) monitor failures and their consequences, and (3) lessen the likelihood of failures that might cause harm and take appropriate actions. Designer agrees that prior to using or distributing any applications that include TI products, Designer will thoroughly test such applications and the functionality of such TI products as used in such applications.

TI's provision of technical, application or other design advice, quality characterization, reliability data or other services or information, including, but not limited to, reference designs and materials relating to evaluation modules, (collectively, "TI Resources") are intended to assist designers who are developing applications that incorporate TI products; by downloading, accessing or using TI Resources in any way, Designer (individually or, if Designer is acting on behalf of a company, Designer's company) agrees to use any particular TI Resource solely for this purpose and subject to the terms of this Notice.

TI's provision of TI Resources does not expand or otherwise alter TI's applicable published warranties or warranty disclaimers for TI products, and no additional obligations or liabilities arise from TI providing such TI Resources. TI reserves the right to make corrections, enhancements, improvements and other changes to its TI Resources. TI has not conducted any testing other than that specifically described in the published documentation for a particular TI Resource.

Designer is authorized to use, copy and modify any individual TI Resource only in connection with the development of applications that include the TI product(s) identified in such TI Resource. NO OTHER LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE TO ANY OTHER TI INTELLECTUAL PROPERTY RIGHT, AND NO LICENSE TO ANY TECHNOLOGY OR INTELLECTUAL PROPERTY RIGHT OF TI OR ANY THIRD PARTY IS GRANTED HEREIN, including but not limited to any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information regarding or referencing third-party products or services does not constitute a license to use such products or services, or a warranty or endorsement thereof. Use of TI Resources may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

TI RESOURCES ARE PROVIDED "AS IS" AND WITH ALL FAULTS. TI DISCLAIMS ALL OTHER WARRANTIES OR REPRESENTATIONS, EXPRESS OR IMPLIED, REGARDING RESOURCES OR USE THEREOF, INCLUDING BUT NOT LIMITED TO ACCURACY OR COMPLETENESS, TITLE, ANY EPIDEMIC FAILURE WARRANTY AND ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, AND NON-INFRINGEMENT OF ANY THIRD PARTY INTELLECTUAL PROPERTY RIGHTS. TI SHALL NOT BE LIABLE FOR AND SHALL NOT DEFEND OR INDEMNIFY DESIGNER AGAINST ANY CLAIM, INCLUDING BUT NOT LIMITED TO ANY INFRINGEMENT CLAIM THAT RELATES TO OR IS BASED ON ANY COMBINATION OF PRODUCTS EVEN IF DESCRIBED IN TI RESOURCES OR OTHERWISE. IN NO EVENT SHALL TI BE LIABLE FOR ANY ACTUAL, DIRECT, SPECIAL, COLLATERAL, INDIRECT, PUNITIVE, INCIDENTAL, CONSEQUENTIAL OR EXEMPLARY DAMAGES IN CONNECTION WITH OR ARISING OUT OF TI RESOURCES OR USE THEREOF, AND REGARDLESS OF WHETHER TI HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

Unless TI has explicitly designated an individual product as meeting the requirements of a particular industry standard (e.g., ISO/TS 16949 and ISO 26262), TI is not responsible for any failure to meet such industry standard requirements.

Where TI specifically promotes products as facilitating functional safety or as compliant with industry functional safety standards, such products are intended to help enable customers to design and create their own applications that meet applicable functional safety standards and requirements. Using products in an application does not by itself establish any safety features in the application. Designers must ensure compliance with safety-related requirements and standards applicable to their applications. Designer may not use any TI products in life-critical medical equipment unless authorized officers of the parties have executed a special contract specifically governing such use. Life-critical medical equipment is medical equipment where failure of such equipment would cause serious bodily injury or death (e.g., life support, pacemakers, defibrillators, heart pumps, neurostimulators, and implantables). Such equipment includes, without limitation, all medical devices identified by the U.S. Food and Drug Administration as Class III devices and equivalent classifications outside the U.S.

TI may expressly designate certain products as completing a particular qualification (e.g., Q100, Military Grade, or Enhanced Product). Designers agree that it has the necessary expertise to select the product with the appropriate qualification designation for their applications and that proper product selection is at Designers' own risk. Designers are solely responsible for compliance with all legal and regulatory requirements in connection with such selection.

Designer will fully indemnify TI and its representatives against any damages, costs, losses, and/or liabilities arising out of Designer's noncompliance with the terms and provisions of this Notice.

> Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2018, Texas Instruments Incorporated